Потеря механической энергии формула. Кинетическая и потенциальная энергия

Сообщение от администратора:

Ребята! Кто давно хотел выучить английский?
Переходите по и получите два бесплатных урока в школе английского языка SkyEng!
Занимаюсь там сам - очень круто. Прогресс налицо.

В приложении можно учить слова, тренировать аудирование и произношение.

Попробуйте. Два урока бесплатно по моей ссылке!
Жмите

Один из наиболее важных законов, согласно которому физическая величина - энергия сохраняется в изолированной системе. Этому закону подчиняются все без исключения известные процессы в природе. В изолированной системе энергия может только превращаться из одной формы в другую, но ее количество остается постоянным.

Для того, чтоб понять что же представляет из себя закон и откуда это получается возьмем тело массой m, которое уроним на Землю. В точке 1 тело у нас находится на высоте h и покоится (скорость равна 0). В точке 2 тело тело имеет некоторую скорость v и находится на расстоянии h-h1. В точке 3 тело имеет максимальную скорость и оно почти лежит на нашей Земле, то есть h=0

В точке 1 тело имеет только потенциальную энергию, так как скорость тела равно 0,так что полная механическая энергия равна.

После того как мы тело отпустили, оно стало падать. При падении потенциальная энергия тела уменьшается, так как уменьшается высота тела над Землей, а его кинетическая энергия увеличивается, так как увеличивается скорость тела. На участке 1-2 равном h1 потенциальная энергия будет равна

А кинетическая энергия будет равная в тот момент ( - скорость тела в точке 2):

Чем ближе тело становится к Земле, тем меньше его потенциальная энергия, но в тот же момент увеличивается скорость тела, а из-за этого и кинетическая энергия. То есть в точке 2 работает закон сохранения энергии: потенциальная энергия уменьшается, кинетическая растет.

В точке 3 (на поверхности Земли) потенциальная энергия равна нулю (так как h = 0), а кинетическая максимальна (где v3 - скорость тела в момент падения на Землю). Так как , то кинетическая энергия в точке 3 будет равна Wk=mgh. Следовательно, в точке 3 полная энергия тела W3=mgh и равна потенциальной энергии на высоте h. Конечная формула закона сохранения механической энергии будет иметь вид:

Формула выражает закон сохранения энергии в замкнутой системе, в которой действуют только консервативные силы: полная механическая энергия замкнутой системы тел, взаимодействующих между собой только консервативными силами, при любых движениях этих тел не изменяется. Происходят лишь взаимные превращения потенциальной энергии тел в их кинетическую энергию и обратно.

В Формуле мы использовали.

Сведем вместе результаты, полученные в предыдущих параграфах. Рассмотрим систему, состоящую из N частиц с массами . Пусть частицы взаимодействуют друг с другом с силами , модули которых зависят только от расстояния между частицами. В предыдущем параграфе мы установили, что такие силы являются консервативными.

Это означает, что работа, совершаемая этими силами над частицами, определяется начальной и конечной конфигурациями системы. Предположим, что, кроме внутренних сил, на i-ю частицу действует внешняя консервативная сила и внешняя неконсервативная сила . Тогда уравнение движения i-й частицы будет иметь вид

Умножив i-e уравнение на и сложив вместе все N уравнений, получим:

Левая часть представляет собой приращение кинетической энергии системы:

(см. (19.3)). Из формул (23.14)-(23.19) следует, что первый член правой части равен убыли потенциальной энергии взаимодействия частиц:

Согласно (22.1) второй член в (24.2) равен убыли потенциальной энергии системы во внешнем поле консервативных сил:

Наконец, последний, член в (24.2) представляет собой работу неконсервативных внешних сил:

Приняв во внимание формулы (24.3)-(24.6), представим соотношение (24.2) следующим образом:

Величина

(24.8)

есть полная механическая энергия системы.

Если внешние неконсервативные силы, отсутствуют, правая часть формулы (24.7) будет равна нулю и, следовательно, полная энергия системы остается постоянной:

Таким образом, мы пришли к выводу, что полная механическая энергия системы тел, на которые действуют лишь консервативные силы, остается постоянной. В этом утверждении заключено существо одного из основных законов механики - закона сохранения механической энергии.

Для замкнутой системы, т. е. системы, на тела которой не действуют Никакие внешние силы, соотношение (24.9) имеет вид

В этом случае закон сохранения энергии формулируется следующим образом: полная механическая энергия замкнутой системы тел, между которыми действуют только консервативные силы, остается постоянной.

Если в замкнутой системе, кроме консервативных, действуют также неконсервативные силы, например силы трения, полная механическая энергия системы не сохраняется. Рассматривая неконсервативные силы как внешние, можно в соответствии с (24.7) написать:

Проинтегрировав это соотношение, получим:

Закон сохранения энергии для системы невзаимодействующих частиц был сформулирован в § 22 (см. текст, следующий за формулой (22.14)).

Закон сохранения механической энергии: в системе тел, между которыми действуют только консервативные силы, полная механическая энергия сохраняется, т. е. не изменяется со временем:

Механические системы, на тела которых действуют только консервативные силы (внутренние и внешние), называются консервативными системами.

Закон сохранения механической энергии можно сформулировать так: в консервативных системах полная механическая энергия сохраняется.

Закон сохранения механической энергии связан с однородностью времени. Однородность времени проявляется в том, что физические законы инвариантны относительно выбора начала отсчета времени.

Существует еще один вид систем - диссипативные системы , в которых механическая энергия постепенно уменьшается за счет преобразования в другие (немеханические) формы энергии. Этот процесс получил название диссипации (или рассеяния) энергии .

В консервативных системах полная механическая энергия остается постоянной. Могут происходить лишь превращения кинетической энергии в потенциальную и обратно в эквивалентных количествах так, что полная энергия остается неизменной.

Этот закон не есть просто закон количественного сохранения энергии, а закон сохранения и превращения энергии, выражающий и качественную сторону взаимного превращения различных форм движения друг в друга.

Закон сохранения и превращения энергии - фундаментальный закон природы , он справедлив как для систем макроскопических тел, так и для систем микротел.

В системе, в которой действуют также неконсервативные силы , например, силы трения, полная механическая энергия системы не сохраняется . Однако при «исчезновении» механической энергии всегда возникает эквивалентное количество энергии другого вида.

14. Момент инерции твердого тела. Момент импульса. Теорема Штейнера.

Моментом инерции системы (тела) относительно данной оси называется физическая величина, равная сумме произведений масс n материальных точек системы на квадраты их расстоянии до рассматриваемой оси:

Суммирование производится по всем элементарным массам m, на которые разбивается тело.

В случае непрерывного распределения масс эта сумма сводится к интегралу: где интегрирование производится по всему объему тела.

Величина r в этом случае есть функция положения точки с координатами х, у, z. Момент инерции - величина аддитивная : момент инерции тела относительно некоторой оси равен сумме моментов инерции частей тела относительно той же оси.

Если известен момент инерции тела относительно оси, проходящей через его центр масс, то момент инерции относительно любой другой параллельной оси определяется теоремой Штейнера :

момент инерции тела J относительно произвольной оси равен моменту его инерции Jс относительно параллельной оси, проходящей через центр масс С тела, сложенному с произведением массы тела на квадрат расстояния а между осями:

Примеры моментов инерции некоторых тел (тела считаются однородными, m - масса тела):

Моментом импульса (количества движения) материальной точки А относительно неподвижной точки О называется физическая величина, определяемая векторным произведением:

где r - радиус-вектор, проведенный из точки О в точку А;

р = mv - импульс материальной точки;

L - псевдовектор, его направление совпадает с направлением поступательного движения правого винта при его вращении от к.

Модуль вектора момента импульса:

где а - угол между векторами r и р;

l - плечо вектора р относительно точки О.

Моментом импульса относительно неподвижной оси z называется скалярная величина Lz, равная проекции на эту ось вектора момента импульса, определенного относительно произвольной точки О данной оси. Момент импульса Lz не зависит от положения точки О на оси z.

При вращении абсолютно твердого тела вокруг неподвижной оси z каждая отдельная точка тела движется по окружности постоянного радиуса r, с некоторой скоростью Vi. Скорость Vi и импульс mV перпендикулярны этому радиусу, т. е. радиус является плечом вектора . Поэтому момент импульса отдельной частицы равен:

Момент импульса твердого тела относительно оси есть сумма моментов импульса отдельных частиц:

Используя формулу получим, что момент импульса твердого тела относительно оси равен произведению момента инерции тела относительно той же оси на угловую скорость:

4.1. Потери механической энергии и работа непотенциальных сил. К.П.Д. Машины

Если бы закон сохранения механической энергии выполнялся в реальных установках (типа машины Обербека), тогда много расчётов можно было бы делать на основе уравнения:

Т о + П о = Т(t) + П(t) , (8)

где: Т о + П о = Е о - механическая энергия в начальный момент времени;

Т(t) + П(t) = Е(t) - механическая энергия в некоторый последующий момент времени t.

Применим формулу (8) к машине Обербека, где можно изменять высоту подъёма груза на нити (центр масс стержневой части установки не меняет своего положения). Поднимем груз на высоту h от нижнего уровня (где считаем П =0). Пусть вначале система с поднятым грузом покоится, т.е. Т о = 0, П о = mgh (m - масса груза на нити). После отпуска груза в системе начинается движение и её кинетическая энергия равна сумме энергии поступательного движения груза и вращательного движения стержневой части машины:

Т = + , (9)

где - скорость поступательного движения груза;

, J - угловая скорость вращения и момент инерции стержневой части

Для момента времени, когда груз опускается на нулевой уровень, из формул (4), (8) и (9) получаем:

mgh =
, (10)

где
, - линейная и угловая скорости в конце спуска.

Формула (10) представляет собой уравнение, из которого (в зависимости от условий опыта) можно определять скорости и, массуm , момент инерции J , либо высоту h.

Однако формула (10) описывает идеальный тип установки, при движении частей которой отсутствуют силы трения и сопротивления. Если работа таких сил не равна нулю, тогда механическая энергия системы не сохраняется. Вместо уравнения (8) в этом случае следует записать:

Т о о = Т(t) + П(t) + A s , (11)

где А s - суммарная работа непотенциальных сил за все время движения.

Для машины Обербека получаем:

mgh =
, (12)

где , k - линейная и угловая скорости в конце спуска при наличии потерь энергии.

В исследуемой здесь установке действуют силы трения на оси шкива и дополнительного блока, а также силы сопротивления атмосферы при движении груза и вращении стержней. Работа этих непотенциальных сил заметно уменьшает скорости движения частей машины.

В результате действия непотенциальных сил часть механической энергии преобразуется в другие формы энергии: внутреннюю энергию и энергию излучения. При этом работа Аs точно равна суммарному значению этих других форм энергии, т.е. всегда выполняется фундаментальный, общефизический закон сохранения энергии.

Однако в установках, где происходит движение макроскопических тел, наблюдаются потери механической энергии , определяемые величиной работы Аs. Это явление существует во всех реальных машинах. По этой причине вводится специальное понятие: коэффициент полезного действия - к.п.д . Такой коэффициент определяет отношение полезной работы к запасённой (израсходованной) энергии.

В машине Обербека полезная работа равна полной кинетической энергии в конце спуска груза на нити, и к.п.д. определяется формулой:

к.п.д .= (13)

Здесь П о = mgh - запасённая энергия, израсходованная (преобразованная) в кинетическую энергию машины и в потери энергии, равные Аs, Т к - полная кинетическая энергия в конце спуска груза (формула (9)).



Поделиться: